
Software Engineering Technology

The Ada 2005 standard will help many users. But the reality of working in a frozen, legacy development environment needs
to be addressed. Development in a mixed version (Ada 83 and Ada 95) and mixed language (C and C++) environment
involves dealing with many issues. This article addresses the issues that we encountered when developing applications for the
Air Force Mission Planning System. These issues fit into three main categories: dealing with Ada strings, using inter-lan-
guage interfacing, and using different Ada compilers (83 and 95) but maintaining one code base. This article discusses sev-
eral of the technical issues involved in interfacing Ada, C, and C++ from both a syntactical and run-time perspective.

The Air Force uses three different mis-
sion planning systems (Mission

Planning System [MPS], Portable Flight
Planning Software [PFPS] and Joint
Mission Planning System [JMPS]) to plan
routes and missions for training and actu-
al war fighting. The Overlay Import/
Export Tool (OIET) and MPS Common
Route Definition Import/Export Tool
(MCIET) were developed to import to
the MPS data from PFPS and JMPS, or
export data from the MPS for use on
PFPS and JMPS. OIET imports/exports
machine and user generated graphics
needed for flight planning. MCIET does
the same for route information. This arti-
cle addresses some of the obstacles faced
during the development and sustainment
of these software programs in mixed
development environments.

The MPS was developed by a govern-
ment contractor in the early 1990s.
Because mission planning is such a criti-
cal task, stability is very important, so the
development and run-time systems were
frozen at that time, with the exception of
some critical upgrades, like the Y2K
patch. However, legacy hardware and
software are not supported forever. A
government contract with Sun provided
for the continued availability of the old

versions of the operating system and
compilers. But new hardware was not
easily compatible with the older operat-
ing system, and the older hardware was
becoming increasingly difficult to main-
tain. Therefore, a decision was made in
2004 to upgrade to the current hardware,
operating systems, and compilers.

New hardware and software allows a
great leap forward for both the develop-
ers and users. But the criticality of mis-
sion planning prevents the users from
moving until their entire planning envi-
ronment is moved. Each aircraft system
(i.e., B-2, B-52H, F-117) has a different
mission planning environment (MPE)
that consists of the core software (oper-
ating system and applications) along with
additional installable software modules
(ISMs) and other software. This means
that the OIET and MCIET need to be
maintained for both the old system and
the new system until all aircraft MPEs
have been upgraded to the new system.

String Issues
Because many of Ada’s features were
originally designed to address
Department of Defense (DoD) needs,
Ada handles several important features
(such as strings, pointers, and memory

allocation/deallocation) differently from
its programming peers – languages such
as C, C++, and Java. This article covers
several important topics that merit sepa-
rate discussion, especially in the context
of not only multiple-language program-
ming, but also in the context of a mixed-
mode language environment. One of the
most important issues involves the way
Ada treats strings as opposed to other
languages.

Ada Strings
The initial MPS development environ-
ment had been frozen with an Ada 83
compiler. Strings in Ada 83 (as in most
computer languages) are arrays of char-
acters. Ada 83 was designed with a great
consistency about how arrays are han-
dled: arrays must be defined with a par-
ticular size before they can be used; when
assigning one array to another, they must
be the same length and contain the same
type of data. This works fine for an array
of generic data but not nearly as well for
strings where variable-length is normal.

When strings are passed around, vari-
able lengths are often used. Receiving a
variable-length array (including strings) as
a parameter to a subprogram (procedure
or function) is relatively easy to do.
However, returning a variable-length
array (or string) as the return value of a
function or an out parameter of a proce-
dure is not possible using standard Ada
83 language constructs. Some sort of
substitute (or trickery) must be used to
accomplish the desired result. This is why
the Ada 95 standard added the unbound-
ed-string type and the allocate-and-assign
construct (pointer : = new string’(trim_ spaces
(some_ string));), so that standard solutions
will be available.

But since we needed to pass variable-
length strings in Ada 83, we developed

Maintaining Sanity in a Multilanguage World

Val C. Kartchner
309 SMXG/MXDDA

22 CROSSTALK The Journal of Defense Software Engineering August 2006

package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

…

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

- Top of file (For Ada 83 compiler)

Figure 1: Core of VString Package

August 2006 www.stsc.hill.af.mil 23

the VString (variable string) package. A
VString variable is basically a string-
access (string pointer) with the current-
length-used, but the VString package
hides the implementation details (see
Figure 1). This package also provides an
interface (supporting procedures and
functions) to do what is needed to
VString variables. The VString type could
have been implemented as a private type,
but because of the string access type
inside, it is not recommended.

For instance, if VString is a private
type and two variables (Aye and Bee)
contain the VString values of Alphabet
and Spelling Bee respectively assigning
Aye to Bee (or Bee := Aye;) would copy
the values exactly (i.e, Bee.cur_length :=
Aye.cur _length; and Bee.str_access :=
Aye.str_access;) The access to the Spelling
Bee string is now lost. This is called a
memory leak1. The string reference by
both Aye and Bee is also referenced (ref-
erenced two or more times) so that if
Aye is set to Numerics (using VString
functions), Bee also holds the same
string. This is not usually desirable.

Also, if unchecked_deallocation is instan-
tiated to free (return to available memo-
ry) the string-access memory, and both
Aye and Bee are freed, the same memory
will be freed twice, creating a potentially
disastrous problem in the program.

This is why VString is declared as a
limited private type, so that assignment is
not allowed between two variables of the
same type. With Ada95, these problems
do not exist because limited-private types
may have the assignment operator over-
loaded and tagged-types have the equiva-
lence of destructors (through Ada.
Finalize).

Support subprograms are used to
copy Ada strings or C strings to VStrings.
VStrings may also be copied to Ada
strings, with automatic truncation or
extension (space filling) to the size of the
destination string. A VString is also kept
null-terminated2 so that it can be passed
to a C or C++ function. As needed, other
support subprograms to compare, paste,
slice, search, replace, output, and debug,
have been added to the package. This
package has proven useful and is used
extensively in OIET and MCIET.

There are some good reasons for allo-
cating more character space (in the string)
than will be immediately needed. Dynamic
memory allocation algorithms will always
allocate memory in multiples of a minimum
allocation unit, so taking advantage of this
does not consume more actual memory
than usual. Also, depending on the pro-
gram and string, a string may change size

several times over its lifetime and allocat-
ing a little more memory is likely to delay
the need for reallocation of memory as
the string grows. If the length of the
string decreases, it may only be a tempo-
rary decrease, so holding on to the memo-
ry is not likely to adversely affect perfor-
mance. When Ada calls for the actual
string, the slice of the allocated string that
is in use is returned.

Because a limited private type cannot
be automatically copied (in Ada 83), we
had to find another way of including
variable-length strings in nodes of a
generic linked list package. Instead, we
used string access types directly in the
nodes of the list. Another option would
have been to provide a copy procedure as
one of the parameters to the generic
linked list package.

This VString package worked for us

because we had to use Ada 83. But if you
have the option, use the improved string
handling capabilities added in Ada 95 or
Ada 2005.

More on C Strings
Ada83 has no standard way to pass or
receive C strings, but the compiler that
we used provided a proprietary method
of doing this. The Ada95 standard has
defined the Interfaces.C.Strings package as
this interface. Passing and receiving C
strings is done extensively throughout the
Ada portion of our code; using the
respective compiler-provided interfaces
would split our code into pairs of files
that would be mostly identical, thereby
increasing maintenance costs. Also, using
a file preprocessor would have been
unwieldy in this case.

The least disruptive method to pass
and receive strings was to create two dif-
ferent packages, one for each Ada (83
and 95) compiler. Each package would
reside in a different file but internally call
itself CString_Interfaces. Each package
would present the same interface to users

of the package and become an interme-
diary to the actual functionality provided
by each compiler. Relatively small
changes were then made to the code that
needed to interface with C strings
(including the VString package discussed
above). One of these changes was to use
C_String_Ptr wherever a pointer to
(address of) a C String was needed. Any
user of this package can use C_String_Ptr
without knowing (or caring) what the
actual type is. As needed, other subpro-
grams to perform needed functions, like
copying to and from C Strings, are pro-
vided in the CString_Interfaces package.
The specification and body for each of
the two implementations resides in the
same directory and a make3 file is used to
compile the appropriate version of the
package.

Interlanguage Interfacing
Since some of OIET and MCIET are
written in C, strings are also often passed
between Ada and C, but Ada strings are
not simple. It is easier to pass C Strings
using the C-String interface package pro-
vided with your compiler, as discussed in
the previous section. When passing a
string to a C function, unless special con-
siderations have been made (like passing
in the length also), each string will need
to be null-terminated. To facilitate this,
the VString package places an ASCII.null
after the used portion of each VString.
When the cptr function is called, it returns
a C_String_Ptr ready to be passed into a C
function. Like the C_String_Ptr used, it is
good practice to declare a new type for
each pointer type that is passed around so
that a user does not accidentally pass a
pointer of one data type to a function
expecting another.

Also, do not assume that an integer in
Ada will correspond to an int in C.
Depending on the compiler and compil-
er options, it may or may not. But find-
ing out which types of addresses, inte-
gers, and floating-point values corre-
spond between Ada and C is a simple
process of consulting the respective
compiler manuals.

Another key to interfacing with
another language is understanding how
each language will pass subprogram para-
meters. FORTRAN always passes para-
meters by reference. That is, if 1 is passed
to a subprogram, the value of 1 is placed
in memory and the address of the mem-
ory location is passed to the receiving
subprogram (in a processor register or on
the processor stack). C passes parameters
by value or by address. Passing by value
means that if a value of 1 is passed as a

“Another key to
interfacing with

another language is
understanding how
each language will
pass subprogram

parameters.”

Maintaining Sanity in a Multilanguage World

parameter; a 1 is passed to the receiving
subprogram. Passing by address means
that the same thing happens as passing by
reference. C++ may pass by value, by refer-
ence, or by address.

The difference between by address and
by reference is determined by how the
receiving program treats the address
received. If the parameter is received by
reference, then the receiving subprogram
knows to fetch the value from the
address specified. That is, the address of
the variable is implicitly dereferenced. If
the subprogram receives by address, it
must specify that it is fetching the value
from the address. That is, the address of
the variable is explicitly dereferenced. This
applies to Ada when an access type is
passed into a subprogram and .all is used
to get the value stored at that access
location.

It is important to understand the dif-
ferent ways that parameters may be
passed to discuss how to interface
between languages. In both of the Ada
compilers used for this project (Ada 83
and Ada 95), a parameter specified as in is
passed by value, and a parameter specified
as out or in out is passed and received by
reference. Simple types (integer, floating-
point numbers, addresses, etc.) are
returned from Ada and C functions by
value. Ada may return complex types
(strings, records, arrays, etc.), but we did
not experiment with returning such types
between languages.

Concerning subprogram parameters,
Ada is more restrictive than C. Ada pro-
cedures allow parameters to be in, out, or
in out, but allow no value to be returned.
Ada functions have return values, but
parameters can only be in, which is also
the default if not specified. It is best to
use the more restrictive Ada rules. In C or
C++, the equivalent to an Ada procedure
would be a void function. If a C function
needs to have both out parameters and a
return value (such as a system function),
then a wrapper function can be used.

For instance, to find the status of a
file, the system function int stat(const char
*path, struct stat *buf); is used. Success or
failure status is returned from the func-
tion as an integer value, and the status of
the file itself is returned in the buffer. A
C wrapper function could look like this:
void wrap_stat(int* result, const char *path,
struct stat *buf) { *result = stat(path, buf); }.
The Ada declaration to call this C func-
tion would look like procedure
wrap_stat(result : out integer ; path: in
C_String_Ptr; buf : out stat_record_type);
with the supporting declarations of the
stat_record and C function.

Ada and C++ Issues
One problem between Ada and C++
surfaces during runtime. Both Ada and
C++ have variables, records, and objects
that must be initialized when the pro-
gram starts to run, before the first sub-
program (main in the case of C++) is

entered. In order to do so, each language
wants to control program start-up, but
only one can. An alternative considered
was to let one of the languages start the
program then call the other language’s
initializer (subprogram to initialize data).
This varies from compiler to compiler
and even operating system to operating
system. These routines were not found
in the manuals for our compilers, so
another plan had to be devised.

The program was broken into two
pieces: one program initialized by Ada
and one program initialized by C++.
The Ada portion runs the Graphical
User Interface (GUI) and calls the C++
portion much like a subroutine would be
called. This is implemented by using the
Unix system functions fork (to start
another child process), execl (to execute a
new program inside of a process), and
wait (to wait for a child process to com-
plete). The exit status of the subpro-
gram is used where a return value would
normally be used, but the type may only
be an unsigned integer in the range of
zero to 255. To use this value returned
from the child process, symbolic names
(constants) are defined for each of the
return values used in both Ada and C++
to indicate what type of success or fail-
ure has occurred. For instance, the value
of zero is defined as STATUS_SUC-
CESS or fully successful completion.
For longer messages meant for the user
to view (error, warning, or information-
al messages), the name of a log file is
passed as a parameter to the new pro-
gram. If there is anything in the log file
to show the user, an appropriate value is
returned. In the case of abnormal termi-
nation of the child process, a system
error code is automatically returned by
wait.

Some code needed for results in the
GUI had already been written in C++,
and by its nature could not easily be seg-
mented to run as another program.
Through experience it was found that
the C++ Standard Template Library
(STL) relied on the initializers being
called, so they could not reliably be used
in any of these routines. However, while
resolving this issue, it was also discov-
ered that even though the C++ initializ-
ers are not run, global and static memory
for simple types (ints, chars, pointers,
arrays, structs, etc.) was initialized as
expected, but the memory occupied by
global and static objects (instantiations
of classes) is always cleared, initialized to
zeroes. There was a need to program
defensively, but the clearing of the mem-
ory could be used advantageously. If a

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering August 2006

package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

…

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

error_message(“Exception “ &

Current_Exception.Exception_Name &

“ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

error_message(“Exception “ &

Ada.Exceptions.Exception_Name(Event) &

“ propagated out of Export_Overlay”);

end Export_Overlay;

Figure 3: Exception Handling Example for Ada 95

package VString is

type VString is limited private;

subtype C_String_Ptr is CString_Interfaces.C_String_Ptr;

…

private

type String_Access is access String;

type VString is

record

cur_length : Natural := 0;

str_access : String_Access := Null;

end record;

end;

--Top of file (For Ada 83 compiler)

With Current_Exception;

…

-- Exception block

exception

when others =>

error_message(“Exception “ &

Current_Exception.Exception_Name &

“ propagated out of Export_Overlay”);

end Export_Overlay;

--Top of file (For Ada 95 compiler)

With Ada.Exceptions;

…

-- Exception block

exception

when Event: others =>

error_message(“Exception “ &

Ada.Exceptions.Exception_Name(Event) &

“ propagated out of Export_Overlay”);

end Export_Overlay;

Figure 2: Exception Handling Example for Ada 83

Maintaining Sanity in a Multilanguage World

August 2006 www.stsc.hill.af.mil 25

key variable was still zero, then the
object had not been initialized at com-
pile time so it had to be initialized at run
time. This may not be true of other
compilers, but it is of both of the Ada
compilers used for OIET.

There are additional problems when
interfacing between Ada and C++. Both
languages allow subprogram overload-
ing4 (including operators), but must work
with linkers that require unique symbol
names when assembling the program
from the separately compiled source
files. In order to do this, each compiler
makes unique symbol names by name
mangling (changing the name) but in dif-
ferent ways. For instance, two Ada func-
tions function calc(it: integer) return integer;
and function calc(it:float) return float; in the
package test become the linker symbols
_A_calc.3S10.test and _A_calc.4S10.test
respectively. The equivalent functions
declared in C++ become the linker sym-
bols _Z4calci and _Z4calcf respectively.
These exact linker symbols will be dif-
ferent depending on the compilers used.

C does not allow overloading so the
function names are not changed to
accommodate this feature. Both Ada
and C++ provide for linking with code
written in the C language. The simplest
way to resolve the name mangling issue
is to indicate to each compiler that it
will be interfacing with C even when
there will be no intermediate C func-
tion. For C++, the function will also
have to be a global function or a static
class method.

Different Ada Compilers,
One Code Base
Between the Ada 83 and 95 compilers,
there are differences in how some lan-
guage constructs are specified. In the
Ada 83 standard, there were suggestions
on how to use pragma statements to
export Ada symbols for use by other
languages and how to import symbols
from other languages for use by Ada.
The Ada 95 standard specified how
these interface pragmas are to be. But the
standard way is different than how our
Ada 83 compiler implemented them.

Also, when catching an OTHERS
exception, Ada 83 provides no standard
way to find out what specific exception
has been caught. The compiler that we
used has a set of functions that will
retrieve the exception name and the pro-
cedure in which the exception occurred
so that we can notify the user (through
the GUI) of the problem (see Figure 2).
Ada 95 provides a standard way to do
this, one different from the proprietary

method our Ada 83 compiler used to
implement this feature (see Figure 3).

Both the exception differences and
the interface pragma differences are
issues with parts of the language so they
could not be fixed by using an interme-
diate package. In C or C++, these types
of differences would usually be handled
by using preprocessor directives to per-
form conditional compilation and/or
macros. The Ada 83 compiler that we
are using has a proprietary preprocessor
similar to the C preprocessor but using
Ada-like syntax. The Ada 95 compiler
provides nothing like a preprocessor.
Several other solutions were considered,
but it was decided that using a pre-
processor would be the simplest to
implement. To illustrate what was done,
the exception example will be used
because it is slightly more complex.

The file preprocessor included with a
C compiler is simple in theory, substitut-
ing text and macros where the prepro-
cessing symbol appears. But when the
GNU C compiler was used with the pre-
process only directive, it objected to the
Ada code surrounding the preprocessor
code. The result was the same for the
GNU C++ compiler.

Brief consideration was given to
writing a preprocessor to meet our
needs, but to do it right seemed like a
two to three week task. In the hope that
someone else had encountered a similar

problem and already crafted a solution, a
search was undertaken at the two largest
open-source repositories on the internet:
<www.sourceforge.net> and <www.fresh
meat.net>. After exploring a few of the
resultant programs, filepp was found on
the later site. It turned out that it does
exactly what is needed but is also highly
configurable (in case it does not do what
is needed)5,6.

To use the preprocessor to do what
needs to be done, a file exceptions.a was
created that contains the substitutions
that need to be done. This file is written
such that if no version is specified, the
preprocessor will display an error (see
Figure 4). To use this file, an #include
exceptions.a is placed at the beginning of
the file where the other with directives
occur. The exception-handling portion
of the code is then rewritten to use the
macros (see Figure 5). For instance,
EXCEPTION_EVENT(x) is a macro
expecting text between the parenthesis
when used. This text will then be placed
where x appears in the text at the end of
the line (compare Figures 2 through 5).

If this were used on the file test.a to
produce the preprocessed version of the
file (test_p.a) for the Ada 95 compiler
(that we call Life Cycle Upgrade [LCU]),
the command filepp -DLCU -o test_p.a
test.a would run. Again, this would be
placed in the make file so that the pre-
processing is automatically performed

--Top of file (Before preprocessing)

#include exceptions.a

…

-- Exception block

exception

when EXCEPTION_EVENT(others) =>

 error_message(“Exception “ &

EXCEPTION_NAME &

“ propagated out of Export_Overlay”);

end Export_Overlay;

Figure 4: Significant Portion of “exceptions.a”

-- Significant portion of “exceptions.a”

#ifdef C2_2d

With Current_Exception;

#define EXCEPTION_EVENT(x) x

#define EXCEPTION_NAME Current_Exception.Exception_Name

#else

#ifdef LCU

With Ada.Exceptions;

#define EXCEPTION_EVENT(x) Event: x

#define EXCEPTION_NAME Ada.Exceptions.Exception_Name(Event)

#else

#error “Must define Core version number”

#endif

#endif

Figure 5: Exception Handling Example for Preprocessor

on test.a when the program is built. The
Ada compiler receives the file test_p.a.

Conclusion
The reality of legacy development envi-
ronments and systems is that not all pro-
gramming problems can or should be
accomplished in the same language,
development environment or even the
latest versions of these tools. The real
world just is not that simple. And some-
times we have to choose the best tool
for the job from those available.
Interfacing with one or more other lan-
guages also requires knowledge of data
representations and how the languages
send and receive the data. Solutions can
be found that will allow maintaining the
same code base on two (or more) dis-
parate operating environments without
too much maintenance overhead.u

Notes
1. Both the Ada 83 and Ada 95 standards

allow for automatic garbage collection
but do not require that the memory be
reclaimed until after the type goes out
of scope (see <www.adaic.org/docs/
craft/html/ch11.htm> and <www.
adaic.org/docs/craft/html/ch11.

htm>). Since VString is declared in a
package, it will not go out of scope
until the program exits.

2. C and C++ use the ASCII null charac-
ter as a sentinel to mark the end of
strings. C++ has also defined a more
Ada-like string type as part of its stan-
dard.

3. Make is a program commonly used to
build programs from the component
source files. The make file or makefile
describes to make the order and how
to process each file to make the final
result.

4. Overloading is having two (or more)
subprograms with exactly the same
name but different parameter types.
The compiler determines which sub-
program to call by the types of the
parameters passed.

5. See the documentation at <www.
cabaret.demon.co.uk/filepp/>.

6. The substitutions done by filepp are
case-sensitive. In the case of these
files, the C convention of making
preprocessor symbols all uppercase
is used.

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering August 2006

About the Author

Val C. Kartchner is the
lead programmer of the
Overlay Import/Export
Tool installable software
module for the Air Force
Mission Planning Sys-

tem. He has more than 15 years experi-
ence in software development, design,
and maintenance at Hill AFB, the last six
years of which is directly for the
Department of Defense. This experi-
ence in several different programming
languages and development environ-
ment has granted the experience neces-
sary to solve issues such as those detailed
in this article. Kartchner has a Bachelor
of Science in computer science from
Weber State University.

309th SMXG/MXDDA
6137 Wardleigh RD
Hill AFB, UT 84056-5843
Phone: (801) 775-2777
Fax: (801) 775-2772
E-mail: val.kartchner@hill.af.mil

ACM SIGAda
www.acm.org/sigada
Here you will find information on the special interest group
(SIG) Ada organization and pointers to current information
and resources for the Ada programming language. It is a
resource for the software community’s ongoing understanding
of the scientific, technical, and organizational aspects of the Ada
language's use, standardization, environments and implementa-
tions. This is ACM SIGAda’s latest effort to help expand acces-
sibility to Ada information. They want to make this the one
stop for information on both SIGAda’s current activities and on
the Ada language and community at large.

The Ada Information Clearinghouse
http://adaic.org/
The Web site provides articles on Ada applications, databases of
available compilers, current job offerings, and more. The Ada
Information Clearinghouse is managed by the Ada Resource
Association, a group of software tool vendors who support the
use of Ada for excellence in software engineering.

Ada Home
www.adahome.com
Since March 1994, this server provides a home to users and poten-
tial users of Ada, a modern programming language designed to
support sound software engineering principles and practices. The
Ada Home Floors and Rooms contain many unique tools and
resources to help expand knowledge and increase productivity.

Ada World
www.adaworld.com
Ada World has been created essentially to bring the Ada pro-
gramming language a central place where Ada developers and
curious programmers can learn about Ada, see what is happen-
ing as far as Ada development projects go, and give a good idea
of what can be done with Ada. To reach this goal, Ada World
serves as a place where Ada developers can talk about Ada as well
as work on development projects.

Ada Power
www.adapower.com
Ada possesses the ultimate in flexibility (oo and non-oo), real stan-
dardization, and validation, true cross-platform programming,
incredible compile time error checking, readable code, and support
of all levels of software engineering. As a way of contributing back
to the Ada community and to help advocate this powerful lan-
guage, AdaPower.com was formed, and includes on its Web site
examples of Ada source code that illustrate various features of the
language and programming techniques, various interfaces to pop-
ular operating systems (thick and thin level bindings), and exam-
ples of Ada source code that illustrate various algorithms; a col-
lection of packages for reuse in Ada programs; and articles on
implementing software in Ada.

WEB SITES

